Calculation of the Gamma Function by Stirling's Formula

By Robert Spira

Abstract

In this paper, we derive a simple error estimate for the Stirling formula and also give numerical coefficients.

Stirling's formula is:

$$
\log \Gamma(s)=\left(s-\frac{1}{2}\right) \log s-s+\frac{1}{2} \log 2 \pi
$$

$$
\begin{equation*}
+\sum_{k=1}^{m} s^{1-2 k}(2 k)^{-1}(2 k-1)^{-1} B_{2 k}+R_{m} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{m}=-\int_{0}^{\infty}(s+x)^{-2 m}(2 m)^{-1} B_{2 m}(x-[x]) d x \tag{2}
\end{equation*}
$$

Formulas (1) and (2) and a simple estimate for $\left|R_{m}\right|$ are derived in de Bruijn [1, pp. 4648].

Another form of R_{m}, developed on the assumption $\operatorname{Re} s>0$, is

$$
R_{m}=\frac{2(-1)^{m}}{s^{2 m-1}} \int_{0}^{\infty}\left\{\int_{0}^{t} \frac{u^{2 m} d u}{u^{2}+s^{2}}\right\} \frac{d t}{e^{2 \pi t}-1}
$$

(Whittaker and Watson [5, p. 252]), and Whittaker and Watson also estimate this expression, finding

$$
\left|R_{m}\right| \leqq \frac{\left|B_{2 m+2}\right| K(s)}{(2 m+1)(2 m+2)|s|^{2 m+1}}
$$

where

$$
K(s)=\text { upper bound }\left|s^{2} /\left(u^{2}+s^{2}\right)\right|, \quad u \geqq 0
$$

This is the form given in the NBS Handbook, and is clearly poor near the imaginary axis. It follows, however, from this form, that if $|\arg s| \leqq \pi / 4$, then the error in taking the first m terms of the asymptotic series is less in absolute value than the absolute value of the $(m+1)$ st term. Another form of the remainder, valid for $|\arg s| \leqq$ $\pi-\delta$, is derived in Whittaker and Watson [5, §13.6], but this remainder involves the Hurwitz zeta function, and has never been used for numerical estimates. An estimate for R_{m}, as given by (2), may be found in Nielsen [6, p. 208], and, expressed in current notation, is

$$
\left|R_{m}(s)\right|<\frac{\left|B_{2 m+2}\right|}{(2 m+1)(2 m+2)|s|^{2 m+1}} \frac{\left(\cos \left(\frac{1}{2} \arg s\right)\right)^{2 m+2}}{}
$$

Received May 15, 1970, revised November 19, 1970.
AMS 1969 subject classifications. Primary 6525.
Key words and phrases. Asymptotic series, gamma function.

This gives a uniform estimate in the angle $|\arg s| \leqq \pi-\delta$. We now develop an estimate for R_{m} which has the advantages of simplicity in application, and uniformity for a set of points whose distance from the negative real axis is \geqq some fixed amount.

Theorem.

$$
\begin{array}{ll}
\left|R_{m}\right| \leqq 2\left|B_{2 m} /(2 m-1)\right| \cdot|\operatorname{Im} s|^{1-2 m} & \text { for } \operatorname{Re} s<0, \operatorname{Im} s \neq 0, \\
\left|R_{m}\right| \leqq\left|B_{2 m} /(2 m-1)\right| \cdot|s|^{1-2 m} & \text { for } \operatorname{Re} s \geqq 0 . \tag{4}
\end{array}
$$

Proof. Since $B_{2 m}(x-[x])$ varies only slightly over the range of x, and $\left|B_{2 m}(x-[x])\right|$ $\leqq\left|B_{2 m}\right|$, the problem of estimating $\left|R_{m}\right|$ reduces to the problem of estimating $\int_{0}^{\infty}|s+x|^{-2 m} d x$. Note that the integrand will be large only when s is near $-x$. By symmetry, we need only consider the case when $\operatorname{Im} s \geqq 0$. First, let Re. $s<0$ and $\operatorname{Im} s \neq 0$. Then, taking $k=\operatorname{Im} s$,

$$
\int_{0}^{\infty}|s+x|^{-2 m} d x=\int_{0}^{-\mathrm{Re} s}+\int_{-\mathrm{Re} \theta}^{-\mathrm{Re} s+k}+\int_{-\mathrm{Re} s+k}^{\infty}
$$

Estimating the integrands of the second integral by $|s+x|^{-2 m} \leqq k^{-2 m}$, and of the third by $|s+x|^{-2 m} \leqq(x+\operatorname{Re} s)^{-2 m}$, we obtain

$$
\int_{0}^{\infty}|s+x|^{-2 m} d x \leqq \int_{0}^{-\mathrm{Re} g}|s+x|^{-2 m} d x+k^{1-2 m}+(2 m-1)^{-1}(k)^{1-2 m}
$$

It remains to estimate $\int_{0}^{-\mathrm{Re}}$. If $-\operatorname{Re} s \leqq k$, we approximate the integrand again by $k^{-2 m}$, giving

$$
\int_{0}^{-\mathrm{Re} s}|s+x|^{-2 m} d x \leqq(-\operatorname{Re} s) \cdot k^{-2 m} \leqq k^{1-2 m}
$$

If, however, $-\operatorname{Re} s>k$, we break up the range of integration, giving

$$
\begin{aligned}
\int_{0}^{-\mathrm{Re}_{\mathrm{e}} \mathrm{E}}|s+x|^{-2 m} d x & \leqq \int_{0}^{-\mathrm{Res}-k}|s+x|^{-2 m} d x+\int_{-\mathrm{Re}_{\mathrm{E}-k}}^{-\mathrm{Re} \mathrm{E}}|s+x|^{-2 m} d x \\
& \leqq \int_{0}^{-\mathrm{Re} \theta-k}(-x-\operatorname{Re} s)^{-2 m} d x+k^{1-2 m} \\
& =\frac{1}{2 m-1}\left[k^{1-2 m}-(-\operatorname{Re} s)^{1-2 m}\right]+k^{1-2 m} \\
& \leqq(1+1 /(2 m-1)) k^{1-2 m}
\end{aligned}
$$

So that in all cases, if $\operatorname{Re} s<0$

$$
\int_{0}^{\infty}|x+s|^{-2 m} d x \leqq(4 m /(2 m-1)) k^{1-2 m}
$$

so we have derived (3).
If $\operatorname{Re} s \geqq 0$, then $|s+x|^{-2 m} \leqq|k i+x|^{-2 m}$ since

$$
|s+x|^{2}=(\operatorname{Re} s+x)^{2}+(\operatorname{Im} s)^{2}=2 x \operatorname{Re} s+x^{2}+k^{2} \geqq|k i+x|^{2}
$$

Next, estimating as before,

$$
\int_{0}^{\infty}|k i+x|^{-2 m} d x \leqq \int_{0}^{k} k^{-2 m} d x+\int_{k}^{\infty} x^{-2 m} d x \leqq k^{1-2 m}(1+1 /(2 m-1))
$$

thus giving (4), and completing the proof.
On taking the exponential, we find

$$
\begin{equation*}
\Gamma(s) \sim(2 \pi)^{1 / 2} e^{-s} s^{s-1 / 2} \exp \left[\sum_{k=1}^{N_{1}} \frac{A_{2 k-1}}{s^{2 k-1}}\right] \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{2 k-1}=B_{2 k} / 2 k(2 k-1) \tag{6}
\end{equation*}
$$

A short calculation gives (formally)

$$
\begin{align*}
\exp \left[\sum_{k=1}^{\infty} \frac{A_{2 k-1}}{s^{2 k-1}}\right] & =1+\sum_{k=1}^{\infty} s^{-k}\left[\sum_{\left(\alpha_{1} i_{1}, \ldots, \alpha_{n} i_{n}\right) \in Q(k)} \frac{A_{\alpha_{1}}^{i_{1}} A_{\alpha_{2}}^{i_{2}}, \cdots, A_{\alpha_{n}}^{j_{n}}}{j_{1}!j_{2}!, \cdots, j_{n}!}\right] \tag{7}\\
& =1+\sum_{k=1}^{\infty} c_{k} s^{-k}
\end{align*}
$$

where the α_{i} 's are distinct and $Q(k)$ is the set of partitions of k into odd parts ($\alpha_{i}^{i i}$ means α_{i} repeated j_{i} times in the partition).

Wrench [2] found the recurrences

$$
\begin{align*}
(2 k-1) c_{2 k-1} & =\frac{B_{2}}{2} c_{2 k-2}+\frac{B_{4}}{4} c_{2 k-4}+\cdots+\frac{B_{2 k}}{2 k} \tag{8}\\
2 k c_{2 k} & =\frac{B_{2}}{2} c_{2 k-1}+\frac{B_{4}}{4} c_{2 k-3}+\cdots+\frac{B_{2 k}}{2 k} c_{1}, \tag{9}
\end{align*}
$$

where $k=1,2,3, \cdots$ and $c_{0}=1$, and these formulas are more suitable for calculation than (7).

Wrench [2] also gave the c_{i} 's for $j=0(1) 20$, in exact form and to 50D, and also found approximations to about 6 S for $j=21(1) 30$. We give in Table 1 the exact rational values for $j=21(1) 30$, and in Table 2 their 45D equivalents. The following corrections are necessary in Wrench's tables. In his Table 2, the last ten digits of c_{13} read 01893 93280, and should read 0189409396 . In his Table 3, entries 22, 23, 24, 26, 28,30 can be corrected from Table 2 of this paper. Dr. Wrench confirmed the correctness of the author's value for c_{13}, and that it is likely that the author's corrections to his Table 3 are also valid. It is of interest to note that while Dr. Wrench's calculations were carried out on a desk calculator, the author's were performed on a Fortran simulator of a large decimal machine (Spira [7]).

A further calculation revealed that entries $3,4,7,8,11,12,15,16,17$ for c_{n+1} / c_{n} in Table XII of Spira [3] have errors beyond 16S. These errors did not affect the remaining tables.

Finally, we remark that estimates for the error in using

$$
\begin{equation*}
\Gamma(s) \sim(2 \pi)^{1 / 2} e^{-s} s^{s-1 / 2}\left\{1+\frac{c_{1}}{s}+\frac{c_{2}}{s^{2}}+\cdots+\frac{c_{k}}{s^{k}}\right\} \tag{10}
\end{equation*}
$$

can be obtained from estimating

$$
\begin{equation*}
\exp \left\{\sum_{i=1}^{m} A_{2 i-1} s^{1-2 j}+R_{m}\right\}-\sum_{i=1}^{k} c_{i} s^{-i} \tag{11}
\end{equation*}
$$

TABLE 1

34856851734234401648335623107688675640839679447003 | 2601 | 64872 | 18125 | 16297 | 62664 | 73959 | 14866 | 28167 | 68000 | 00000 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 9 | 09773 | 12459 | 95425 | 06852 | 27522 | 94225 | 93983 | 24288 | 04521 | 45053

97	40572	81446	60610	18314	16785	03052	59358	59793	92000	00000		
-	18	38564	55668	17780	20033	16143	79951	80647	19008	29995	86348	26921
1	40264	24852	83112	78663	72401	70443	95734	76381	03244	80000	00000	
258331	20988	61137	96374	59020	36370	49694	38721	38148	65171	20938	16393	

 2114866241537081164613223324215572812504648703648482437460602956015127
 180394412915538782140015777241228025103785450235726235175126981743099027459

$\stackrel{H}{\sim}$	N	$\stackrel{n}{N}$	$\stackrel{+}{\sim}$	$\stackrel{1}{\sim}$	$\stackrel{+}{\sim}$	「	$\stackrel{\infty}{\sim}$
v^{2}	0^{*}	0°		0			

TABLE 2

c_{21}	13.39798	54551	42589	21762	69304	32019	67195	04205	85565
c_{22}	1. 12080	44642	89911	60686	26394	00139	92394	10087	44581
c_{23}	- $156 \cdot 80141$	27040	22726	37282	36984	46041	18986	42959	25353
c_{24}	$-13 \cdot 10786$	30226	33865	65902	75053	22267	17265	62139	54267
C_{25}	2192•55553	60905	23432	96901	29668	35404	98912	17444	39338
c_{26}	$183 \cdot 19073$	34845	24338	08866	21120	60475	26830	49008	10167
C_{27}	-36101. 11929	32220	75951	91379	10143	10212	31172	74408	12019
C_{28}	- 3015.07731	26223	05854	21582	73842	95134	58512	61670	77656
C_{29}	691346.37614	18781	21600	20149	42362	07859	56471	17679	20033
c_{30}	57721•33636	30407	22716	58721	99716	32365	57540	83996	54732

and using (3) and (4), where $m=[(k+2) / 2]$. For example, for $\operatorname{Re} s \geqq 0$ and $|s| \geqq 1$, and $k=m=2$, we have

$$
\Gamma(s)=(2 \pi)^{1 / 2} e^{-s} s^{s-1 / 2} \exp \left\{\frac{1}{12 s}+\frac{1}{360 s^{3}}+R_{2}\right\}
$$

where

$$
\left|R_{2}\right| \leqq \frac{1}{90|s|^{3}},
$$

so

$$
\left|\exp R_{2}-1\right| \leqq\left|R_{2}\right|\left\{1+\left|R_{2}\right|+\left|R_{2}\right|^{2}+\cdots\right\} \leqq \frac{1}{89|s|^{3}}
$$

Next,

$$
\begin{aligned}
\left\lvert\, \exp \left(\frac{1}{12 s}+\frac{1}{360 s^{3}}\right)\right. & \left.-\left(1+\frac{1}{12 s}+\frac{1}{288 s^{2}}\right) \right\rvert\, \\
& \leqq \frac{1}{360|s|^{3}}+\frac{1}{12 \cdot 360|s|^{4}}+\frac{1}{2 \cdot 360^{2}|s|^{6}}+\frac{1}{3!}\left|\frac{1}{12 s}+\frac{1}{360 s^{3}}\right|^{3}+\cdots
\end{aligned}
$$

which estimates as before. Such estimates show the series for $\Gamma(s)$ is an asymptotic series (de Bruijn [1]).

For calculations near the origin, it is best to use the functional equation $\Gamma(s+1)=$ $s \Gamma(s)$ and calculate $\Gamma(s)=\Gamma(s+j) / P(s)$, where $P(s)$ is a polynomial. This formula could also be used for larger $|s|$ for ultraprecise calculations where precisions are needed which are greater than the maximum precision obtainable from the asymp-
totic formula. For calculations in the left half-plane with small imaginary part, one can use the equation $\Gamma(s) \Gamma(1-s)=\pi / \sin \pi s$.

The preparation of this paper was with the aid of NSF Grant GP-8957. I wish to thank the referee for several suggestions.

Mathematics Department
Michigan State University
East Lansing, Michigan 48823

1. N. G. de Bruijn, Asymptotic Methods in Analysis, Bibliotheca Math., vol. 4, NorthHolland, Amsterdam; Noordhoff, Groningen; Interscience, New York, 1958. MR 20 \#6003.
2. J. W. Wrench, JR., "Concerning two series for the gamma function," Math. Comp., v. 22, 1968, pp. 617-626. MR 38 \#5371.
3. R. Spira, Table of the Riemann Zeta Function, UMT files, reviewed in Math. Comp., v. 18, 1964, pp. 519-521.
4. Table of the Gamma Function for Complex Arguments, Nat. Bur. Standards, Appl. Math. Series, vol. 34, 1954.
5. E. T. Whittaker \& G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, New York, 1962. MR 31 \#2375.
6. N. Nielsen, Die Gammafunction. Band I. Handbuch der Theorie der Gammafunktion. Band II. Theorie des Integrallogarithmus und verwandter Transzendenten, Chelsea, New York, 1965. MR 32 \#2622.
7. R. Spira, Fortran Multiple Precision. Parts I, II, Mathematics Department, Michigan State University, East Lansing, Michigan, 1970.
